St. Johns River Water Management District St. Johns River Water Management District St. Johns River Water Management District St. Johns River Water Management District St. Johns River Water Management District St. Johns River Water Management District
St. Johns River Water Management District - www.sjrwmd.com

www.sjrwmd.com

Online tools, GIS, data

HAR (Lake Harris)

Site Photograph

Basin characterization

873.703 km²

Location: latitude 28°46’12.474”, longitude 81°48’21.408”, GPS datum—WGS-1984 Station HAR is located at the center of Lake Harris.

Point sources: The Tavares/Woodlea Road wastewater treatment facility is located within a five-mile radius and within the drainage basin of this water quality site.

Lake Harris is the namesake for the Harris Chain of Lakes. This chain of seven lakes is located in Lake County in central Florida and empties into the Ocklawaha River, which makes it way to the St. Johns River. Lake Harris covers 13,788 acres, second only to Lake Apopka in the Harris Chain of Lakes.

The lake lies in an east-west orientation with the north side of the lake dominated by a mixture of commercial, industrial, and private uses. The city of Leesburg is located on the northwestern shores with State Road (SR) 27 bordering the west shore. The eastern and southern shores reflect a mixture of private residences, citrus groves, and wetlands.

There are two public boat ramps located on Lake Harris. One is located off SR 27 at the west end of the lake and the other is located off of SR 19 at the southeastern side of the lake. Both ramps offer plenty of parking for vehicles and trailers. An added bonus is the ramp at SR 19 located in a county park with additional facilities and amenities.

There are also two points of ingress/egress by boat to Lake Harris. You can access Lake Harris in the northeastern section of the lake from Lake Eustis through the Dead River. This waterway offers a scenic ride through a cypress wetland, complete with abundant wildlife and prime fishing. This area serves as a roosting area for many types of waterfowl and many large alligators have been spotted here. The second point of access is from the Palatlakaha River on the southwestern side of the lake. The southern shoreline still contains many beautiful cypress trees.

All types of boaters, power and sailing, and fishermen utilize Lake Harris. Lake Harris is quite a large lake and should be given caution during windy conditions.

Site and Watershed Locator Map

Quick links

All of the maps and charts shown below were created using a customized GIS data summary tool, with the watershed generated by Arc Hydro for this monitoring station. More information about Arc Hydro can be found by going to the Technical background page. From that page, a description of the customized GIS data summary tool can be accessed.

Spatial data summaries

Download spatial data summaries Excel Icon

2000 population density

Population data is collected by the Census Bureau every 10 years and is used to show the distribution of population in a number of ways. Population density has a direct impact on land use, which effects water quality in areas around or near water bodies. This map displays the 2000 population density per square kilometer within this surface water catchment. The legend shows the area for each class in square kilometers and the percentage of area in descending order. More complete metadata can be found by clicking on the metadata link for the 2000 population density.

Watershed Population Density

General land use 2000

Land use, which is usually derived from aerial photography by photo interpreters, shows the distribution of land and how it is used. Land use affects the water quality of water bodies through water runoff within a surface water catchment. This map displays the distribution of eight categories of general land use within this surface water catchment. The legend shows the area for each category in square kilometers and the percentage of area in descending order. More complete metadata can be found by clicking on the metadata link for general land use 2000.

Watershed General Land Use

Watershed Geology
Geology

The geology of the state of Florida was delineated by the Florida Geological Survey. Water quality is impacted by the underlying geology of streams and lakes. This map displays the underlying geological formations within this surface water catchment. The legend shows the area for each type of formation in square kilometers and the percentage of area in descending order. More complete metadata can be found by clicking on the metadata link for geology.

 


Watershed Geology

Physiographic divisions

Physiography describes the earth’s exterior physical features. These are divided into general groups and then subgroups containing features such as uplands, hills, ridges, plains, valleys, karst, etc. Water quality is affected through water runoff by physiography. This map displays the more detailed physiographic subdistricts within this surface water catchment. The legend shows the area for each subdistrict in square kilometers and the percentage of area in descending order. More complete metadata can be found by clicking on the metadata link for physiographic divisions.

Watershed Physiographic Divisions

2004 rainfall

Rainfall data comes from radar imaging as well as rainfall gauge surveys. Rainfall affects water quality through runoff within the surface water drainage basins. This map displays the total daily rainfall in inches for each pixel for 2004 within each surface water catchment. The legend shows the area for each rainfall range in square kilometers and the percentage of area in descending order. More complete metadata can be found by clicking on the metadata link for 2004 rainfall.

Watershed Rainfall

St. Johns River Water Management District and other public lands

The St. Johns River Water Management District (SJRWMD) purchases lands that are in environmentally sensitive areas to protect the water resources on, beneath or adjoining the property. Water quality is affected in water bodies adjacent to these protected lands. This map displays the lands owned, jointly owned, being considered for purchase, or lands through which SJRWMD has an easement. The legend shows the area of these lands in acres and the percentage of area in descending order. More complete metadata can be found by clicking on the metadata link for SJRWMD and public lands.

Watershed Public Lands

Soils drainage

Soils drainage characteristics can also impact surface water runoff, a source of nonpoint pollution for adjacent water bodies, which effects water quality. This map displays water bodies and soil drainage characteristics. The legend shows the area of these soils in square kilometers and the percentage of area in descending order. More complete metadata can be found by clicking on the metadata link for soils drainage.

Watershed Soils Drainage

5-foot elevation — DEM

Land elevation influences rainfall runoff, which effects the surface water quality, as water moves through the landscape to the rivers, streams, and lakes. This map with accompanying legend displays the maximum (MAX), minimum (MIN), range, standard deviation (STD) and mean of 5-foot elevations within the surface water drainage area (watershed). More complete metadata can be found by clicking on the metadata link for 5-foot elevation-DEM (Digital Elevation Model).

Watershed 5-Foot Elevation

Recharge 1995

In some areas of SJRWMD, the Floridan aquifer is at or near land surface and is vulnerable to pollutants that threaten our drinking water supply. It is especially important to preserve surface water quality in these areas. This map displays recharge to the Floridan aquifer in inches per year (in/yr) within this surface water drainage catchment. Discharge, where the potentiometric surface is greater than the land surface elevation, is also shown. The area for each class is shown in square kilometers and the percentage of area in descending order. More complete metadata can be found by clicking on the metadata link for recharge 1995.

Watershed Recharge

Arc Hydro model

The map below contains selected features from the St. Johns River Water Management District (SJRWMD) Arc Hydro geodatabase. The introduction of the SJRWMD Arc Hydro geodatabase made the creation of these fact pages possible, by providing improved geographic information system (GIS) data that has been combined into a GIS network. This hydrologically based network does for water resources what the commonly used mapping websites (such as MapBlast, MapQuest and GoogleMaps) have done for travel planning, except that instead of interstates, highways and roads, this hydrologic network shows streams, rivers, lakes and wetlands. Similar to transportation mapping sites, information about water resources has been related, or linked, to the GIS network and can be easily accessed. The legend to the right of the map includes the Arc Hydro network, Arc Hydro Polygon Feature Classes and HydroPoints. The features included in the Arc Hydro Network exist to establish relationships based on surface water flow. The lines (HydroEdges) may represent streams or rivers, which are commonly displayed as lines on maps. The lines may also represent, in a “shorthand” way, the concept of surface water flow through a lake or a wetland, which are not routinely displayed as lines. The features in the Arc Hydro Polygon Feature Classes and HydroPoints represent some of the water resources information that has been linked to the Arc Hydro GIS network. HDS in the map legend below refers to the District’s Water Resource Information program and NWIS refers to the National Water Information System, which is part of the United States Geological Survey (USGS). See Technical Background for a more detailed explanation of the SJRWMD Arc Hydro technology and its features.

Arc Hydro Model Graphic

Clicking on the Methodology link will direct you to information about how water quality samples were collected, analyzed, and summarized for this fact page. View the most recent Water Quality Status and Trends Report.

Water quality

Download water quality data

Lake Harris is located in western Lake County and is in the Harris Chain of Lakes. It is sampled by boat, every other month, as part of the ambient monitoring program. The lake is about 4.4 meters deep at the sample site and has a typical temperature range. Major ion concentrations are high enough to result in moderately hard water. The median dissolved oxygen concentration is elevated when compared to other lakes in the District. The lake has fair buffering capacity and an alkaline pH. When compared to other lakes, total organic carbon concentrations and color are lower than typically found. But according to the Forsberg–Ryding criteria, Secchi depth, chlorophyll, and total nitrogen concentrations are high and indicate hypereutrophic condition. Total phosphorus concentrations are low, but enough to indicate a eutrophic condition. Coliform counts and total suspended solids concentrations are typical, although turbidity is elevated. The lake has fair water quality, according to the trophic state index.

Analytes Data Yrs N Data Min Q1 Median Q3 Max Range
Water temperature (°C) 15 162 12.40 19.07 24.07 28.56 32.71 mid
Secchi disc transparency (meters) 15 162 0.30 0.45 0.50 0.65 1.50 mid-hi
Color (platinum-cobalt units) 15 138 10.00 15.00 20.00 30.00 150.00 mid-lo
Specific conductance (µhmhos/cm @ 25° C) 15 160 174.40 232.90 259.35 277.55 380.00 mid-lo
Sample collection depth (meters) 15 163 0.50 0.50 0.53 0.53 1.00 high
Dissolved oxygen analysis by probe (mg/L) 15 157 5.08 7.90 8.91 9.82 13.44 mid-hi
pH (standard units) 15 160 7.27 8.33 8.56 8.75 9.29 mid-hi
Total alkalinity (mg/L as CaCO3) 15 138 65.20 83.53 91.44 99.77 115.00 mid-hi
Total nonfiltrable residue (mg/L) 15 152 5.00 12.00 16.85 20.60 46.20 mid
Total nitrogen (mg/L as N) 15 153 0.54 1.71 2.02 2.23 2.80 mid
Total phosphorus (mg/L as P) 15 153 0.01 0.04 0.04 0.05 0.09 low
Total organic carbon (mg/L as C) 15 138 -2.21 14.30 16.20 18.30 25.99 mid-lo
tsi 15 151 55.30 65.44 68.75 72.08 81.23 mid
Total calcium (mg/L as Ca) 15 131 21.40 30.45 33.06 35.69 50.50 mid
Total magnesium (mg/L as Mg) 15 131 4.41 5.77 6.60 7.55 9.65 mid-lo
Total sodium (mg/L as Na) 15 131 7.83 9.30 10.00 10.80 26.60 mid-lo
Total potassium (mg/L as K) 15 131 0.83 3.27 3.60 3.90 6.82 mid
Total chloride (mg/L) 15 138 14.10 17.58 19.57 21.40 26.00 mid-lo
Total sulfate (mg/L as SO4) 15 138 0.01 9.03 10.03 11.35 13.60 mid-lo
fecal coliform (MF M-FC broth 44.5° C) 4 12 2.00 2.00 2.50 15.00 20.00 mid
Trichromatic uncorrected chlorophyll-a (µg/L) 15 153 2.38 37.06 50.50 67.02 132.00 mid-hi
Hardness (mg/L Ca+Mg) 15 131 72.00 102.12 111.48 118.32 153.00 mid
Total filtrable residue (mg/L dried at 180° C) 15 127 120.00 151.00 166.00 180.00 310.00 mid-lo
Lab turbidity (NTU) 15 137 2.45 8.60 11.00 14.15 29.00 mid-hi
Sample site depth (meters) 15 162 2.50 4.10 4.40 4.70 6.00 high

Careers

In this section
Highlights
More about
Careers

Search www.sjrwmd.com

Governing Board meetings
Please see agendas for specific meeting times, which may differ monthly.

Lobbyist registration requirements

Other district meetings and notices

Central Florida Water Initiative

Tell us how
we are doing.

Take our survey on
customer service.

By accessing this site, you agree to accept terms and conditions of the district’s liability disclaimer.

Employee Portal

St. Johns River Water Management District
4049 Reid Street, Palatka, FL 32177
(800) 725-5922