StreamLines

Understanding the value of water

District environmental scientist Ron Brockmeyer, far right, works with volunteers at North Peninsula State Park on a shoreline restoration project.

Streamlines

By Ed Garland

They’re all twentysomethings, brimming with vigor and youthful energy. Temporary refugees from frigid locales like Chicago and Fort Wayne, Indiana, grateful for the balmy breezes and morning sunlight of late winter in Florida as they prepare to do some heavy lifting and slosh knee-deep in the Halifax River.

“You’re going to want to wear gloves to protect your hands,” implores Ron Brockmeyer, an environmental scientist with the St. Johns River Water Management District. “Oysters are sharp. And be sure to drink plenty of water and put on sunblock. You’ll find that the sun is more intense here in Florida.”

Brockmeyer knows a thing or two about organizing volunteers and treating them well. He’s been leading coastal marsh restoration projects for the district for 24 years and been working in wetlands for 35 years. On this day, he’s orchestrating a shoreline restoration project at North Peninsula State Park, a lonely stretch of marshy wilderness north of Ormond Beach in Flagler County.

The spirited employees of the Brunswick Corp. — the parent company of names like Boston Whaler, Bayliner and Mercury Marine — are amped and ready to move 400 bags of oysters and another 200 sandbags onto a barge for transport to the restoration site. By the day’s end, 22,000 pounds of material will pass through their hands as they create an oyster reef to abate shoreline erosion. This living shoreline technique provides shoreline stabilization without building a bulkhead.

Volunteers work with district staff to help establish an oyster reef as part of ongoing coastal restoration work.

We’re using branches, oyster bags and sandbags to create a living fringing reef to protect marshes that we’ve already restored.

Ron Brockmeyer, Environmental Scientist

Bags filled with empty oyster shells are loaded onto a boat in assembly line fashion. The bags are placed at strategic locations in a coastal waterway to help attract oysters to encourage establishment of a new oyster reef.

“We’re trying to reclaim a piece of the marsh,” Brockmeyer explains. “We’re using branches, oyster bags and sandbags to create a living fringing reef to protect marshes that we’ve already restored.”

To understand why the district and many partners began restoring thousands of acres of coastal wetlands, one must first understand how they came to be impacted.

Flashback to the frenetic growth of Florida’s population in the 1950s and 1960s. The advent of air conditioning made year-round living tolerable and the Space Race spawned boomtowns along the East Coast. The only niggling drawback was the mosquito population that ruled the state’s coastal marshes. The solution came in the form of large excavators called draglines that transformed Florida from the Mosquito Age to the Modern Age. These machines carved networks of deep, wide ditches through coastal wetlands and piled the spoil in mounds between the ditches. They were also used to create approximately 40,000 acres of impoundments used for mosquito control.

Dragline ditching created areas that were always dry or always wet, thereby interrupting the life cycle of saltmarsh mosquitoes. These bloodsuckers lay their eggs on moist soils and rely on intermittent flooding by tides or rain to trigger hatching and release of larvae. Ditches also allowed fish to access the wetlands and eat mosquito larvae. Dragline ditching reduced the mosquito populations in coastal wetlands, but it also created unintended alterations and reductions in ecosystem services.

In the extensively altered areas in Mosquito Lagoon, more than 1,200 acres of wetlands were replaced with ditches and spoil piles. Likewise, ditching impacted the Indian River Lagoon and the district’s Northern Coastal Basins (the 125 miles of coastline stretching between the St. Marys River south to Ponce Inlet).

Altered wetlands reduced resources for fish and wildlife and offered less buffering protection to the coastline during storms. The spoil piles, rising above the marsh elevation, attracted invasive plants — such as the Brazilian pepper — and diminished native mangroves and grasses that provide shelter and food for fishes (especially juveniles), crabs and shrimps.

Mosquito impoundments dealt another blow to the life cycle of fish and other creatures in the Indian River Lagoon. Mosquito impoundments interrupt mosquito breeding by creating isolated wetlands that can be flooded with water from wells or the adjacent waterways. Soil from ditches dug around the wetland created a dike, which isolated a portion of the wetland from the adjacent waterway. Impoundments obliterate wetland functions and destroy wetland vegetation. They also hindered the movement of fish and invertebrates that normally use the wetlands for breeding, feeding and refuge from predators.

In 1991, the district adopted a method to reconnect the isolated wetlands to the Indian River Lagoon in a way that allowed marine life to flourish while maintaining the ability to control mosquitoes. Working with state, county and federal partners, the district has reconnected approximately 19,490 acres of coastal wetlands to the lagoon. Some additional impoundments, no longer needed for mosquito control, were fully restored. Nearly 2,320 acres were restored, returning 286 acres of dike and ditch to their natural wetland elevation and eliminating more than 42 miles of dikes.

After developing dragline ditch restoration methods, a pilot project was implemented in early 2000. As a result of this successful pilot, Volusia County bought two marsh excavators — earth-moving machines modified with pontoons to transform them into amphibious machines. The district partnered with Volusia County over the next 15 years to address 615 acres of disturbed wetlands in Mosquito Lagoon and within the Northern Coastal Basins returning 245 acres to wetland elevation.

Coastal wetlands have also been destroyed by the placement of dredge spoil. At Pine Island, district land managers and Brevard County’s Environmentally Endangered Lands program completed 63 acres of dredge spoil removal, restoring these areas to coastal wetland elevation. Following that lead, more than 92 acres of dredge spoil were removed at North Peninsula State Park, where the volunteers are building a living shoreline.

“Partnerships have been vital to our success in restoring coastal marshes,” says St. Johns River Water Management District Executive Director Dr. Ann Shortelle. “We’ve worked together for a common goal and we’ve seen the mended marshes flourish with life and provide the adjacent waterbodies with important benefits.”

Over the years, partners have included the U.S Fish and Wildlife Service, Florida Fish and Wildlife Conservation Commission, Kennedy Space Center, National Oceanic and Atmospheric Administration, National Park Service, Florida State Parks, and Volusia, Indian River and Brevard counties, and countless volunteers.

“The restored areas aren’t always pretty immediately after work is completed, but over time native plants and animals return,” adds Brockmeyer, whose work healing wetlands earned one of six prestigious 2012 National Wetlands Awards given by the Environmental Law Institute, Washington, D.C.

He adds, “Wading and shore birds become a common sight again. Greater variety and numbers of fishes, crabs and shrimps thrive in their new habitat.”